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The Test of English as a Foreign Language (TOEFL.) was developed in 1963 by a National Council
on the Testing of English as a Foreign Language, which was formed through the cooperative effort of
more than thirty organizations, public and private, that were concerned with testing the English
proficiency of nonnative speakers of the language applying for admission to institutions in the United
States. In 1965, Educational Testing Service (ETS) and the College Board assumed joint responsi-
bility for the program, and in 1973, a cooperative arrangement for the operation of theprogram was
entered into by ETS, the College Board, and the Graduate Record Examinations (GRE) Board. The
membership of the College Board is composed of schools, colleges, schoolsystems, and educational
associations; GRE Board members are associated with graduate education.

ETS administers the TOEFL program under the general direction of a Policy Council that was
established by, and is affiliated with, the sponsoring organizations. Members of the Policy Council
represent the College Board and the GRE Board and such institutions and agencies as graduate schools
of business, junior and community colleges, nonprofit educational exchange agencies, and agencies
of the United States government.

A continuing program of research related to the TOEFL test is carried out under the direction of the
TOEFL Research Committee. Its six members include representatives of the Policy Council, the
TOEFL Committee of Examiners, and distinguished English as a second language specialists from the
academic community. Currently the Committee meets twice yearly to review and approve proposals
for test-related research and to set guidelines for the entire scope of the TOEFL research program.
Members of the Research Committee serve three-year terms at the invitation of the Policy Council;
the chair of the committee serves on the Policy Council.

Because the studies are specific to the test and the testing program, most of the actual research is
conducted by ETS staff rather than by outside researchers. However, many projects require the
cooperation of other institutions, particularly those with programs in the teaching of English as a
foreign or second language. Representatives of such programs whoare interested in participating in
or conducting TOEFL-related research are invited to contact the TOEFL program office. All TOEFL
research projects must undergo appropriate ETS review to ascertain that the confidentiality of datawill
be protected.

Current (1991-92) members of the TOEFL Research Committee are:

James Dean Brown
Patricia Dunkel (Chair)
William Grabe
Kyle Perkins
Elizabeth C. Traugott
John Upshur

University of Hawaii
Pennsylvania State University
Northern Arizona University
Southern Illinois University at Carbondale
Stanford University
Concordia University



ABSTRACT

An analysis of the skills necessary for performance on the TOEFL. test tends to support the view that there are
important, although perhaps subtle, secondary dimensions present in the test. Given that these subtle secondary
ability dimensions may be present in examinee response data, and that they do represent meaningful
psychological variables, the purpose of this research was to explore the feasibility of an IRT-based method of
modeling examinee performance on these secondary ability dimensions. The procedure investigated is based on
a multidimensional extension of the IRT itiodcl currently used for equating the TOEFL test. Both exploratory
multidimensional IRT (MIRT) and confirmatory multidimensional IRT (CMIRT) models were investigated in
the study. The work performed included the application of unidimensional IRT, MIRT, and CMIRT models
to two TOEFL forms to evaluate the extent to which model fit is enhanced by using a multidimensional model,
and to determine to what extent the additional fitted ability dimensions correspond to meaningful cognitive
processes or content areas.

The results of this study indicate that the MIRT and CMIRT procedures were successful in modeling secondary
ability dimensions on TOEFL. The two procedures provided corroborative evidence in interpreting the structure
of the test that was consistent with previous interpretations of the test's structure. The data presented in this
study also provide an illustration of how a particular criterion for assessing model fit--the consistent Akaike
information criterion--can be utilized to identify the best of several competing models of test structure.



TABLE OF CONTENTS

Ear4
Introduction 1

Item Response Theory 2
Unidimensional Item Response Theory 2

Multidimensional IRT 2
Exploratory Models 3

Confirmatory Models 3

Method 4
Data 4
Estimation 4
Model Evaluation 4
Analyses 6

Results 7

Sampling 7
Model Fit - Exploratory Analyses 8

Model Selection Criteria 8

Analysis of Residuals. 9
Model Fit - Confirmatory Analyses 10

Model Selection Criteria 10

Analysis of Residuals 12

Summary of Model Fit 13

Interpretability of Results 13

Exploratory Results 14

Confirmatory Results 19

Discussion 19

Conclusions 20

References 21



LIST OF TABLES

Pan

Table 1 Summary of CMIRT Target Test Structures 7

Table 2 Number-Correct Score Summary Statistics by Form and Sample 8

Table 3 Exploratory Analysis Model Selection Criteria 9

Table 4 Summary of the Principal Components Analysis of Residuals for

the Exploratory Analyses 10

Table 5 Confirmatory Analysis Model Selection Criteria 11

Table 6 Summary of the Principal Components Analysis of Residuals for

the Confirmatory Analyses 13

Table 7 Means and Standard Deviations of Item Parameter Estimates by

Content Area for Confirmatory Solution 3DC1 19

LIST OF FIGURES

rsla

Figure 1 Plots of 3-Dimensional A-Values Form JM 15

Figure 2 Plots of 3-Dimensional A-Values Form JP 16

Figure 3 Plots of 3-Dimensional A-Values Form K9 17

Figure 4 Plots of 3-Dimensional A-Values Form KA 18



INTRODUCTION

Factor analytic research on the Test of English' as a Foreign Language (TOEFL) seems to lead to the conclusion
that the test measures primarily one factor. For example, in a factor analytic study of seven different language
groups, Swinton and Powers (1980) obtained first-to-second eigenvalue ratiosranging from 7.1 to 9.3, depending
on the language group. When the language groups were combined, a ratio of 8.9 was obtained. Similar results
were obtained by Hale, Stansfield, Rock, Hicks, Butler, and Oiler (1988) using both factor analytic and item
response theory (IRT) based methods for assessing dimensionality, by Dunbar (1982) and Hale, Rock, and Jirele
(1989), who used confirmatory factor analysis approaches, and by Boldt (1988) using latent structure analysis.

However, an analysis of the skills necessary for performance on the- TOEFL test tends to support the view that
there are important, although perhaps subtle, secondary dimensions present in the test (Duran, Canale, Penfield,
Stansfield, & Liskin-Gasparro, 1985). Note, for instance, that the test is constructed to have five content
components: listening comprehension, structure, written expression, vocabulary, and reading comprehension.
Each section includes items measuring a variety of content subareas. For example, the listening comprehension
section includes items requiring knowledge of syntax, lexical items, and items focusing on phonology, stress, and
intonation. Moreover, there are a variety of required skills in common to items, not only within sections but also
across sections (Duran et al., 1985). Clearly, then, the TOEFL test includes items measuring a variety of content
areas and cognitive processes. Consequently, it would seem reasonable to expect to fmd at least some empirical
evidence of these dimensions in examinee response data. To some extent, in fact, this expectation is borne out
by the research cited above.

For instance, Swinton and Powers (1980) concluded that there was evidence of three factors underlying examinee
performance on the TOEFL test, although the interpretation of the factors tended to vary with native language
and ability level. Hale et al. (1988) concluded that there was evidence of two factors, one related to listening
comprehension, and one related to the remainder of the test. A latter study by Hale, Rock, and Jirele (1989)
suggested a consistent two-factor structure of the TOEFL test across several language groups. Dunbar (1982)
found evidence of four factors: one general factor and one secondary factor associated with each of the three
TOEFL sections. Oltman, Stricker, and Barrows (1988) used a three-way multidimensional scaling approach to
examine the effects of native language and English proficiency on the structure of the TOEFL test and found
evidence of three dimensions that corresponded to the sections of the examination, ond a fourth that was
identified as an "end-of-test phenomenon."

Given that these subtle secondary ability dimensions may be present in examinee response data, and that they
do represent meaningful psychological variables, it would be useful to have an IRT-based procedure that could
(1) confirm that the such dimensions are or ar3 not present in a particular form of the test and (2) extract
information about these abilities, when present, for individual examinees. Such a procedure could yield valuable
dividends. For instance, it might be possible to use such a procedure to provide meaningful feedback to
examinees regarding their performance on specific content areas and item types. In fact, the ability to provide
useful diagnostics might be enhanced by providing feedback from the procedure to test developers, who could
use the information as a guide to test construction.

The purpose of this research was to explore the feasibility of an IRT- based method of modeling examinee
performance on these secondary dimensions. The procedure investigated is based on a multidimensional
extension of the IRT model currently used for equating the TOEFL test. The work performed included the
application of both unidimensional and multidimensional IRT models to two forms of the TOEFL test to
evaluate the extent to which model fit is enhanced by using various multidimensional models, and to determine
to what extent the additional fitted ability dimensions correspond to test content.
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Item Response

UnIdimensional Item Response Theory

In recent years, item response theory has become a very popular tool both in research and in practical
measurement applications. The attractiveness of IRT derives primarily from its parameter invariance properties
and the availability of well-defined standard errors of estimate (Bock & Aitkin, 1981; Lord, 1980; Lord & Novick,
1968). Moreover, the ability estimate standard errors are expressed as functions of ability. Thus, the standard
error of estimate is reported for each level of ability rather than for a test as a whole, as is the case with more
traditional measurement procedures. As a consequence, not only does the use of IRT improve the quality of
measurement, but it makes possible applications that would be prohibitively difficult or impossible with more
traditional measurement procedures.

Among the item response theory models that have been developed are the two-parameter normal ogive model
(Lord, 1952); the two-parameter logistic model (Birnbaum, 1958); the one-parameter logistic, or Rasch, model
(Rasch, 1960); and the three-parameter logistic model (Birnbaum, 1968). By far the most widely used of these
models are the one-parameter logistic (1PL) model and the three-parameter logistic (3PL) model. The model
used for equating the TOEFL is the 3PL model, which was used in this research.

The 3PL model is given by

Pi(03) a ci+(1ci)/(1.0+exp(Dai(83bi))) (1)

where c, is the pseudo-guessing parameter for item i; ai is the item discrimination parameter for item i; bi is the
item difficulty parameter for item i; and e3 is the ability parameter for examinee j. The D in the exponent is
equal to 1.702, and is included to make the logistic curve more closely approximate what would be obtained using
a normal ogive model.

Although item response theory has proven to be a very powerful and useful measurement tool, use of IRT
models has been somewhat limited because the available models require the assumption that the test being
analyzed measures only a single ability dimension. This unidimensionality assumption often limits the application
of IRT-based methods to tests consisting of relatively homogeneous sets of items, such as might be found on a
vocabulary test. Tests that include items sampled from several content areas, such as a science test containing
both physics and chemistry items, are probably not sufficiently homogeneous to permit analysis using IRT. Such
may also be the case with tests containing multifaceted items, such as a language test containing English structure
items requiring a high level of reading comprehension or vocabulary skill.

In recent years, attempts have been made to extend IRT to the case of multidimensional tests. In
multidimensional IRT, or MIRT, examinee responses are modeled as a function of a set of examinee traits, and
the assumption of unidimensionality is replaced by the less restrictive requirement that the dimensionality of the
item responses matches -the dimensionality of the set of examinee traits used in the MIRT model.

Multidimensional IRT

As with factor analysis, there are two basic approaches to MIRT analysis--exploratory and confirmatory. In
exploratory procedures, the emphasis is on discovering the best fitting model, while in confirmatory approaches
the focus is on evaluating the extent to which the data follow a hypothetical model developed a priori on the
basis of content and process analysis of the instrument to be analyzed. Both approaches were examined in this
research.

2
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Exploratory Models

Most of the recent progress in MIRT research has occurred in two areasthe development of a multidimensional
two-parameter normal ogive nonlinear factor analysis model (Bock, Gibbons, & Muraki, 1985), and the
development of multidimensional two- and three-parameter logistic IRT models (McKinley, 1983, 1987). Work
on these procedures is still at an early stage, but it has progressed to the point that estimation procedures are
available. For the nonlinear factor analysis procedure, the TESTFACT program (Wilson, Wood, & Gibbons,
1984) is available. For the two-parameter logistic IRT model, the MAXLOG program (McKinley & Reckase,
1983) is available, and for the three-parameter model, the MULTIDIM program (McKinley, 1987) is available.

For this research, the MIRT model employed was the multidimensional three-parameter logistic (M3PL) model.
This model was selected for two reasons: microcomputer-based estimation procedures are available for use with
the M3PL model, and it is closely related to the model currently used with the TOEFL test.

The M3PL model is given by

P1(9) ci + (1ci)/(1+exp(-1. 702 (bi + aL'ej))) ( 2 )

where P,(f_oi) is the probability of a correct response to item i by examinee j; 91 is the ability parameter vector
of examinee j; ai is the discrimination parameter vector for item i; b, is the threshold parameter for item i; and
c, is the lower asymptote parameter for item i. The ability and discrimination parameter vectors contain one
element for each dimension.

Uses of the M3PL model thus far have been somewhat limited, primarily due to the recency of the development
of estimation procedures for applying the model. The model was, however, applied to a French proficiency exam
by Kaya-Carton (1988). In this application, parameters of the M2PL model were obtained using the MULTIDIM
program (item lower asymptote parameters were fixed at zero). The method was compared to maximum
Likelihood factor analysis and boolean factor analysis. Despite the shortness of the test (18 items) and the small
sample size (between 700 and 800 examinees), the results obtained were positive. The MIRT solution was found
to be interpretable and consistent with the factor analysis solutions.

Confirmatory Models

As mentioned above, the goal of confirmatory MIRT, or CMIRT, analysis is to confirm or disconfirm the
presence of some hypothesized test structure. In CMIRT, competing hypothesized models are applied to data
and compared using some measure of model fit. The CMIRT procedure used in this research was based on a
modification of the M3PL model.

Adaptation of the M3PL model for use in confirmatory analysis consists of imposing a set of constraints on the
item discrimination parameters in accordance with an a priori target test structure. As an example, consider a
six-item English test containing three vocabulary items and three reading comprehension items. One possible
structure for such a test might be given by

S 1
[ 1

0

1
1
0

1
1
0

1
0
1

1
0
1

1

0
1

(3)

where rows are dimensions and columns are items. A 1 indicates that an item discrimination parameter will be
estimated for the item on that dimension, and a 0 indicates that the item discrimination parameter on that
dimension will be constrained to 0.0. Thus, in this example, the first dimension corresponds to a general latent
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trait, the second dimension represents a trait specific to the first three items, and the third dimension represents
a trait specific to the last three items. (For computational details about CMIRT procedures, see McKinley, 1988,
1989.)

Like the M3PL MIRT model, CMIRT models have not been widely used due to the recency of their
development. In one application reported by Kingston and McKinley (1988), CMIRT procedures were applied
to the Graduate Record Examination's General Test. Results, which were consistent with previous research on
that test, indicated the presence of a general dimension, a verbal dimension, a quantitative dimension, and a weak
analytical dimension defined by logical reasoning items (but not analytical reasoning items).

METHOD

Data for this study comprised the responses to the 146 operational TOEFL items for the November 1987 and
May 1988 administrations. Responses were sampled for 2,500 randomly selected examinees from domestic test
centers and for 2,500 randomly selected examinees from foreign test centers. Sampling was performed by
selecting all candidates with low and high number-correct scores and equal numbers of candidates at each score
level in between' Foreign and domestic examinees were analyzed separately, as were the two forms, as a neans
of cross-validating the results.

Estimation

For all analyses in this study, solutions were based on the M3PL model, except that the c-parameter was not
estimated. Rather, it was held fixed at a value of 02. The parameters of the model were estimated using an
EM algorithm based procedure similar to those described by Bock and Aitkin (1981), Mislevy and Bock (1985),
and Bock, Gibbons, and Muraki (1985). The algorithm has been implemented in the MULTIDIM program
(McKinley, 1987), which is designed for exploratory MIRT analysis, and in the CONFIRM program (McKinley,
1989), which is designed for both exploratory and confirmatory analyses.

In this algorithm, item parameter estimation is performed using a two-step marginal maximum likelihood
procedure. Multiple latent abilities are hypothesized, each is treated as a random variable, and integration over
the joint distributions of these random variables is performed. The integration over the ability distribution,
accomplished through numerical quadrature, is performed during the first step, the E (expectation) step, and
produces an expected sample size and number-correct score at each quadrature node for each item. These
values are used in the second step, the M (maximization) step, to perform marginal maximum likelihood item
parameter estimation.

Model Evaluation

In MIRT, evaluation of model-data fit is relatively straightforward. Solutions for simple models (such as the
unidimensional 3PL model) are obtained first. Models of increasing complexity are then created by adding
parameters. These more complex models subsume simpler models, making it possible to test the significance
of the contribution of the additional parameters using a chi-square procedure such as is implemented in
TESTFACT (Wilson, Wood, & Gibbons, 1984).

'This sampling procedure was used to increase the sensitivity of the analyses, particularly at lower levels of
ability. Although this procedure may have been inconsistent with the assumptions of the marginal maximum
likelihood procedure, the effects of the sampling procedure on the results of the model estimations arc difficult
to predict, as the relationship that exists between observed score distributions and latent ability distributions is
complex. It is recognized that random examinee samples may have yielded different results.

4
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For example, assume that one- and two-dimensional MIRT solutions have been obtained on the same data using
a multidimensional 2PL model. Comparing the solutions can be accomplished by computing, for each solution,
a measure of fit such as the likelihood ratio chi-square statistic (Bock, Gibbons, & Muraki, 1985). This statistic
is given by

J
G2 - 2 E rj ln(rj/NPj) (4)

where J is the number of possible unique response strings for the item set to be calibrated, rj is the number of
examinees with response string j, N is the total number of examinees in the calibration sample, and Pi is
computed as

q
Pj E Li (Nk)Wk

k-1
(5)

wliere Pi represents the marginal likelihood of observing response string j, LL() is the likelihood of observing
response string j given an ability vector equal to and and Wk are the quadrature nodes and weights used
for numerically integrating over the ability distribution. The degrees of freedom for the statistic given by
Equation 4 are given by

df - 2n-n(m+2) (6)

where n is the number of items and m is the number of dimensions. If the c-parameter is not estimated, then
the second term on the right is n(m + 1). For CMIRT models it is necessary to reduce Equation 6 by the number
of parameters constrained to 0.0.

While it is doubtful that the statistic given by Equation 4 is actually distributed as a chi-square, the difference
between the values of 02 for subsuming models has been shown to be asymptotically distributed as chi-square
(Haberman, 1977). The degrees of freedom for the difference between two values of G2 is equal to the
difference between Equation 6 for the two solutions.. For IRT models, this equals the difference in the number
of item parameters estimated.

Another way in which two competing models of test structure can be compared is based on the work of Akaike
(1973, 1987). This approach is based on a criterion called the entropic information criterion (Bozdogan, 1987),
also known as the AIC, and involves evaluating model fit in terms of the natural logarithm of the likelihood of
the solution, which is presumed to be an approximation of the expected log likelihood of the true model. The
greater the likelihood of the solution (in practice, the lower the negative log likelihood), the closer the fitted
model is presumed to approximate the true model. This approach is particularly useful in the context of CMIRT
analysis, since competing models often are not subsuming and therefore cannot be compared using the chi-square
procedure described above.

The AIC statistic is given by

AIC - -2 log(L) + 2k (7)

where log(L) denotes the natural log of the likelihood and k is the number of parameters estimated. The 2k
term constitutes a sort of penalty function that penalizes overparameterization.

5
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A variation on the AIC, called the consistent AIC (CAIC), was proposed by Bok,iagan (1987). This statistic was
derived in response to criticism that the AIC statistic does not provide an asymptotically consistent estimate of
model order (Bozdogan, 1987).

The CAIC statistic is given by

CAIC - -2 log(L) + k(log(N)+1) , ( 8 )

where N is the sample size. This modification of the AIC has the effect of increasing the penalty for
overparameterization and, consequently, tends to lead to the selection of simpler models. All three statistics
were used in this research.

Amino

The first analysis performed in this study was to fit a unidimensional IRT model to both the foreign test center
data and the data from the domestic test centers, and to evaluate the goodness-of-fit of the model for both sets
of data using the chi-square, AIC, and CAIC statistics. Following this, residuals were computed and analyzed,
using a procedure described by Divgi (1980), to determine whether there appeared to be any interpretable
common variance remaining after the model was fit to the data. Residuals were computed as

Ris 40, Pis tits ( 9 )

where P1 is the probability of the observed response to item i by examinee j predicted from the IRT model, and
uj is the observed response. Residual correlation matrices were then analyzed using principal components
analysis. The advantage of this procedure is that residuals are on a continuous scale, which reduces the potential
problems that may occur when principal components are applied to interitem phi or tetrachoric correlations.

After this, two-, three-, and four-dimensional MIRT models were fit to both datasets, and the goodness-of-fit
evaluated. Item discrimination vectors were examined to determine whether the fitted ability dimensions
corresponded to content areas or cognitive processes. Residual analyses were also performed using Divgi's
(1980) procedure.

Finally, the CMIRT procedure was used to impose several hypothesized test structures on the two sets of data.
CMIRT solutions were obtained for one 2-dimensional structure, three 3-dimensional structures, and two
4-dimensional structures. These target structures are summarized in Table 1, which indicates the dimensions
for which discrimination parameters were estimated in a given CMIRT solution. The abbreviations for the test
structures used in Table 1 will be used throughout thi.. report. For example, 3DC3 will refer to the
three-dimensional solution (3D), configuration 3 (C3).

6
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TABLE 1 Summary of CMIRT Target Test Structures

Section
/Part

No.

Solution/Structure
2 Dim. 3 Dim. 4 Dim.

Items 2DC1 3DC1 3DC2 3DC3 4DC1 4DC2

1. Listening Comp. 50
Statements 20 1,2 1,2 1,2 1,2 1,2 1,2
Dialogues 15 1,2 1,2 1,2 1,2 1,2 1,2
Minitalks 15 1,2 1,2 1,2 1,2 1,2 1,2

2. Structure &
Written Exp. 38

Structure 14 1 1,3 1,3 1,3 1,3 1,3
Written Exp. 24 1 1,3 1,3 1,3 1,3 1,3

3. Vocabulary &
Reading Comp. 58

Vocabulary 29 1 1,3 1,3 1,3 1,4 1,3
Reading Comp. 29 1 . 1,3 1,2 1 1,4 1,4

Of the above structures, the 2DC1, 3DC1, and 4DC1 solutions are most consistent with TOEFL structures that
have been suggested by previous research. In each of these solutions, a discrimination parameter is estimated
for each item on the rust dimension, which can be thought of as a general factor. In Solution 2DC1, the second
dimension is constrained so that discrimination parameters are estimated only for listening comprehension items.
In Solution 3DC1, the second dimension is constrained as in Solution 2DC1, while discrimination parameters
on the third dimension are estimated for structure and written expression and vocabulary and reading
comprehension items. In Solution 4DC1, discrimination parameter estimates are obtained for the items in each
of the three TOEFL test sections on three distinct secondary dimensions. Solutions 3DC2, 3DC3, and 4DC2
were hypothesized to allow reading comprehension items to measure different abilities from vocabulary items.
For example, in Solution 3DC2, reading comprehension items were hypothesized to measure the same ability
dimension as listening comprehension items, whereas the vocabulary items were hypothesized to measure the
same ability dimension as the structure and written expression items. In Solution 3DC3, reading comprehension
was hypothesized to be measured only by the general factor. In Solution 4DC2, reading comprehension items
were hypothesized to measure a distinct secondary ability dimension. To evaluate the various CMIRT structures,
the goodness-of-fit of the different CMIRT solutions were compared to each other and to the MIRT solutions.
Residual analyses were also performed.

RESULTS

Sampling

The number-correct score mans and standard deviations, along with sample sizes and KR-20 reliability
estimates, for the four sets of data sampled for this study are shown in Table 2. Although the four sets of data
were similar with regard to these statistics, there are some important differences. Note, for example, that the
number-correct score means are somewhat higher for the samples of domestic examinees and the standard
deviations are somewhat lower. Despite the nonrandom sampling procedures, these results are consistent with
results typically seen on the operational TOEFL test.

7
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TABLE 2 NumberCorrect Score Summary Statistics
by Form and Sample

Form/Sample

Statistic

N Mean S. D. KR-20

November 1987
Foreign (JM) 2,538 90.2 32.1 0.98

Domestic (JP) 2,551 92.2 30.9 0.97

May 1988
Foreign (K9) 2,537 87.7 33.6 0.98
Domestic (KA) 2,509 90.3 31.7 0.98

It can also be seen from Table 2 that the scores were somewhat higher and less variable for the November 1987
samples (hereinafter referred to as JM for the foreign examinee sample and JP for the domestic sample) than
for the May 1988 samples (K9 for the foreign sample and ICA for the domestic sample). These differences are
likely a reflection of differences in average item difficulty between the two test forms, rather than an indication
of differences in group ability.

Model Fit Exploratory Analyses

Model Selection Criteria

Table 3 summarizes the model selection criteria for the exploratory MIRT analyses performed on the four sets
of data. For each test form and examinee sample, Table 3 shows the likelihood ratio chi-square, AIC, and CAIC
statistics for the unconstrained one-dimensional (1D), two-dimensional (2D), three-dimensional (3D), and four
dimensional (4D) solutions.

As the data in Table 3 indicate, the relative ordering of solutions was consistent across for the chi-square and
the AIC selection criteria: for all data sets, the 4D solution would be considered optimal, followed, in order, by
the 3D, 2D, and 1D solutions. In each sample, the differences between chi-square statistics were testable and
were found to be statistically significant. Across solutions, the decreases in the chi-square and AIC statistics from
the 1D to the 2D solutions were largest, and the decreases in these statistics from the 3D to the 4D solutions
were relatively small.

Using the CAIC statistics, however, results in different orderings of the exploratory solutions. For each data
sample, the CAIC statistics indicate that the 3D solutions are optimal. For two of the samples (JM and KA),
the CAIC statistic is lower for the 2D solution than it is for the 4D solution. The differences between the CAIC
results and those obtained for the chi-square and AIC statistics are clearly due to the penalty for
overparameterization that is incorporated into the CAIC statistic (see Equation 8). McKinley (1989) points out
that both the CAIC and AIC statistics essentially embody a "critical value" for testing whether a particular model
is the best fitting one. Selecting the CAIC statistic over the AIC statistic is equivalent to selecting a larger
critical value, which reduces the Type I error rate. In fact, the main advantage of the CAIC statistic is that the
Type I error rate decreases exponentially with increased sample size. Asymptotically, Type I error for the CAIC
statistic goes to zero (Bozdogan, 1987).
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TABLE 3 Exploratory Analysis Model Selection Criteria

Number Criterion
of

Sample Dimensions Chi-Square AIC CAIC

J14

1D 334251.6 374618.8 376615.8
2D 327455.7 368114.8 371110.4
3D 325720.6 366671.7 370665.8
4D 325112.5 366355.6 371348.2

JP
1D 332826.3 373415.0 375413.5
2D 32$494.5 369375.2 372373.0
3D 326372.6 367545.3 371542.3
4D 325445.9 366910.5 371906.8

K9
1D 331088.4 371407.0 373403.9
2D 324155.5 364766.1 367761.5
3D 321895.4 362798.0 366791.8
4D 320813.6 362008.2 367000.5

1D 329103.0 368949.4 370943.1
2D 325507.5 365645.9 368636.4
3D 323915.3 364345.8 368333.1
4D 323093.3 363815.8 368800.0

Analysis of Residuals

Table 4 provides a summary of the analysis of residuals performed on each MIRT solution. For each examinee
sample for each test form, Table 4 provides the first three eigenvalues and the percentage of variance accounted
for by each from a principal components analysis of Pearson correlations computed on residuals. Also shown
are the ratios of the first to second and second to third eigenvalues.
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TABLE 4 Summary of the Principal Components Analysis of
Residuals for tha Exploratory Analyses

Sample/ Eigenvalue (% of Variance) Ratios

Number of
Dimensions E1 E2 E3 E1 /E2 E2 /E3

JM
1D 5.03(3.5) 2.31(1.6) 2.00(1.4) 2.18 1.16

2D 2.35(1.6) 2.06(1.4) 1.83(1.3) 1.14 1.13

3D 2.13(1.5) 1.86(1.3) 1.78(1.2) 1.15. 1.04

4D 1.97(1.3) 1.85(1.3) 1.73(1.2) 1.07 1.07

JP
1D 3.54(2.4) 2.94(2.0) 2.06(1.4) 1.21 1.43

2D 2.96(2.0) 2.08(1.4) 1.77(1.2) 1.42 1.18

3D 2.11(1.4) 1.79(1.2) 1.71(1.2) 1.18 1.05

4D 1.80(1.2) 1.74(1.2) 1.66(1.1) 1.03 1.05

K9
1D 4.96(3.4) 2.88(2.0) 2.39(1.6) 1.72 1.21

2D 2.91(2.0) 2.42(1.7) 2.03(1.4) 1.20 1.19

3D 2.40(1.6) 2.06(1.4) 1.87(1.3) 1.17 1.10

4D 2.03(1.4) 1.89(1.3) 1.79(1.2) 1.07 1.05

KA
1D 3.18(2.2) 2.51(1.7) 2.18(1.5) 1.26 1.15

2D 2.56(1.8) 2.22(1.5) 1.79(1.2) 1.15 1.24

3D 2.24(1.5) 1.79(1.2) 1.68(1.2) 1.25 1.07

4D 1.81(1.2) 1.72(1.2) 1.65(1.1) 1.05 1.04

For the 4D solution, the results reported in Table 4 indicate essentially no meaningful variation remaining in the
residuals. For all data sets, increasing the number of parameters estimated reduced the magnitudes of all three
eigenvalues, with the most pronounced reduction occurring when two discrimination parameters were estimated
instead of one. However, other than the changes apparent in going from the 1D to 2D solutions, there are no
consistent trends in these data across samples. For the 1D data, the magnitudes of the first eigenvalues were
appreciably greater in the foreign data samples (forms JM and K9) than in the domestic data samples. This
suggests that departures from unidimensionality were perhaps more severe for the foreign samples than for the
domestic samples.

Model Fit-Confirmatory Analyses

Model Selection Criteria

Table 5 summarizes the model selection criteria for the confirmatory MIRT analyses. For each test form and
examinee sample, Table 5 shows the likelihood ratio chi-square, AIC, and CAIC statistics for each of the
hypothesized test structures.
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TABLE 5 Confirmatory Analysis Model Selection Criteria

Criterion

Sample Solution , Chi-Square AIC CAIC

JM
2DC1
3DC1
3DC2
3DC3
4DC1
4DC2

329812.3
327340.4
328002.3
328383.9
328963.5
328463.5

370279.5
367999.5
368661.4
368985.1
369622.6
369122.6

372618.4
370995.1
371656.9
371782.3
372618.1
372118.1

JP
2DC1 331262.0 371950.7 374291.4
3DC1 329167.7 370048.4 373046.1
3DC2 329787.2 370667.9 373665.7
3DC3 330721.3 371543.9 374343.2
4DC1 330754.0 371634.6 374632.4
4DC2 330739.1 371619.8 374617.6

K9
2DC1 327098.7 367517.3 369856.1
3DC1 323674.9 364285.5 367280.8
3DC2 324199.2 364809.8 367805.2
3DC3 324640.1 365192.7 367987.7
4DC1 325520.4 366131.0 369126.4
4DC2 324000.2 364610.8 367606.2

KA

2DC1 327987.3 367933.8 370268.8
3DC1 325888.2 366026.7 369017.2
3DC2 326501.9 366640.4 369630.9
3DC3 326989.9 367070.3 369867.8
4DC1 327196.4 367334.9 370325.4
4DC2 327001.7 367140.2 370130.7

Unlike the exploratory analyses, where the optimal solution differed according to the different model selection
criteria, in the confirmatory analyses the chi-square, AIC, and CAIC criteria all indicated that Solution 3DC1
was optimal for each sample. In fact, the chi-square and AIC statistics resulted in the same ordering of solutions
for each sample, and only for Sample JP was the ordering obtained using the CAIC statistic different from those
obtained using the chi-square and AIC statistics.

For the most part, the model selection criteria indicated that the 3D confirmatory solutions were preferable to
the 4D confirmatory solutions. This was somewhat surprising, as Solution 4DC1 was most consistent with the
current configuration of the TOEFL test sections. Solution 3DC1 suggests that the TOEFL test is characterized
by a general dimension, a dimension associated with listening comprehension, and a dimension associated with
the other sections of the test. This solution is consistent with interpretations of the TOEFL test structure
suggested by Hale et al. (1988) and Hale, Rock, and Jire le (1989).

Comparing the results in Table 5 to those in Table 3, it can be seen that for the foreign samples (JM and K9),
the CA IC statistic for Solution 3DC1 was lower than all the CAIC statistics except those for the 3D exploratory
solutions. However, for the domestic samples (JP and KA), the CAIC statistics for the 2D, 3D, and 4D
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exploratory solutions were all lower than the CHIC statistics for any of the confirmatory solutions. A possible
explanation for this result is that there is probably a more salient distinction between the listening comprehension
section of the TOEFL test and the other sections for foreign examinees than for domestic examinees. Foreign
examinees typically havc more trouble with the listening comprehension section of the test than they do with the
other sections. Domestic examinees tend to perform better on listening comprehension relative to the other
sections on the test because they have had more opportunities to listen to spoken Fog,lish in natural settings.

Analysis of Residuals

Table 6 provides a summary of the analysis of residuals performed on each CMIRT solution. For each examinee
sample for each test form, Table 6 provides the first three eigenvalues and the percentage of variance accounted
for by each from a principal components analysis of Pearson correlations computed on residuals. Also shown
are the ratios of the first to second and second to third eigenvalues.

The data in Table 6 indicate little variation in the magnitudes of the eigenvalues across the 3D and 4D
confirmatory solutions. In general, at least one of the three eigenvalues for each of the 2D solutions tends to
be higher than the corresponding eigenvalues for the 3D and 4D solutions.
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TABLE 6 Summary of the Principal Components Analysis of
Residuals for the Confirmatory Analyses

Sample/
Number of
Dimensions

Eigenvalue of Variance)

E1 E2 E3

Ratios

E1 /E2 E2/E3

JM
2DC1 2.41(1.7) 2.04(1.4) 1.85(1.3) 1.18 1.10
3DC1 2.20(1.5) 2.07(1.4) 1.82(1.3) 1.06 1.14
3DC2 2.16(1.5) 1.97(1.3) 1.84(1.3) 1.10 1.07
3DC3 2.16(1.5) 1.93(1.3) 1.82(1.2) 1.12 1.06
4DC1 2.18(1.5) 1.95(1.3) 1.85(1.3) 1.11 1.06
4DC2 2.10(1.4) 1.92(1.3) 1.81(1.2) 1.10 1.06

JP
2DC1 3.23(2.2) 2.09(1.4) 1.78(1.2) 1.54 1.17
3DC1 2.33(1.6) 1.85(1.3) 1.82(1.3) 1.26 1.02
3DC2 2.67(1.8) 1.88(1.3) 1.80(1.2) 1.42 1.04
3DC3 2.87(2.0) 1.97(1.3) 1.81(1.2) 1.46 1.09
4DC1 2.60(1.8) 1.93(1.3) 1.79(1.2) 1.35 1.08
4DC2 2.70(1.8) 1.88(1.3) 1.80(1.2) 1.43 1.05

K9
2DC1 3.11(2.1) 2.41(1.7) 2.07(1.4) 1.29 1.16
3DC1 2.42(1.7) 2.17(1.5) 2.08(1.4) 1.12 1.04
3DC2 2.62(1.8) 2.19(1.5) 2.08(1.4) 1.20 1.05
3DC3 2.58(1.8) 2.13(1.5) 2.08(1.4) 1.21 1.03
4DC1 2.34(1.6) 2.19(1.5) 1.85(1.3) 1.07 1.18
4DC2 2.41(1.7) 2.09(1.4) 1.84(1.3) 1.15 1.13

KA
2DC1 2.55(1.8) 2.23(1.5) 1.79(1.2) 1.15 1.25
3DC1 2.39(1.6) 2.03(1.4) 1.79(1.2) 1.18 1.13
3DC2 2.57(1.8) 1.80(1.2) 1.77(1.2) 1.43 1.02
3DC3 2.53(1.7) 1.83(1.3) 1.79(1.2) 1.39 1.02
4DC1 2.49(1.7) 1.99(1.4) 1.75(1.2) 1.25 1.14
4DC2 2.40(1.6) 1.81(1.2) 1.78(1.2) 1.32 1.02

Summary of Model Fit

For both the exploratory and confirmatory analyses carried out in this study, the model selection criteria
suggested that the 4D interpretations of the TOEFL test were not optimal. The CAIC statistics for the
exploratory 4D solutions were higher than the CAIC statistics for 3D solutions and, in some samples, were higher
than the 2D CAIC statistics. The principal components analyses of residuals were less conclusive, but they did
not indicate that the 4D solutions were clearly preferable to the 2D and 3D solutions. In the confirmatory
analyses, all of the model selection criteria indicated that Solution 3DC1 was preferable to both the 4DC1 and
4DC2 solutions.

Interpretability of Results

As in the case of factor analysis, exploratory MIRT solutions are subject to rotational indeterminancy.
Therefore, extreme caution should be used in examining the unrotated multidimensional item and ability
parameter estimates for the exploratory solutions. Further, comparisons between solutions for the foreign and
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domestic samples for the same test forms (i.e., comparisons between solutions for Forms JM and JP, and
between solutions for Forms 1C9 and KA) are problematic without equating, in the case of both the exploratory
and confirmatory solutions. Because of time and budget constraints, no rotations or equatiziks of solutions were

attempted in the context of this study. To provide some interpretation, however, graphical representations of

the exploratory 3D solutions were inspected to determine if patterns in the multidimensional a-parameter
estimates were related to content areas of the test. In addition, meansand standard deviations of item parameter

estimates for the confirmatory solution 3DC1 were calculated by TOEFL test section.

Exploratory Results

Bivariate plots of the 3D item discrimination estimates for each form and sample are provided in Figures 1

through 4. Each figure has three plots: the a2-estimates graphed against the al-estimates, the a3-estimates
graphed against the al-estimates, and the a3-estimates graphed against the a2-estimates. In each plot, the items

in Section 1 (S1) are represented by squares, the items in Section 2 (S2) by plusses, the vocabulary items in
Section 3 (S3-Voc) by diamonds, and the reading comprehension items in Section 3 (S3-RC) by triangles.

In Figure 1, the plot of the a2 estimates against the al-estimates (top graph) indicates a separate clustering of
the Section 1 items from the items in Sections 2 and 3. A similar clustering can be seen in the plot of the
a3-estimates against the a2-estimates (bottom graph), suggesting that the second ability dimension in this solution

primarily measures listening. The plots involving the a3-estimates (particularly the middle graph) indicate that
the reading comprehension items of Section 3 tend to have the highest discrimination values on this dimension.

In Figure 2, the plot of the a2-estimates against the al-estimates (top graph) for Form JP is very similar to the
plot seen in Figure 1 for Form JM. Again, the Section 1 items cluster distinctly from the Section 2 and 3 items.
However, contrary to the plots in Figure 1, there appears to be no content-related pattern apparent in the
a3-estimates (middle and bottom graphs).

In Figure 3, the observed patterns are similar to those seen in Figure 1, except that the roles of the a2- and
a3-estimates are reversed. That is, the a3-estimates (rather than the a2-estimates as in Figure 1) are clearly higher

for the Section 1 items compared to the Section 2 and 3 items (middle and bottom graphs). Similarly, the
highest a2-estimates (rather than a3-estimates as in Figure 1) are seen almost exclusively for reading
comprehension items (top graph). These differences between Figures 1 and 3 are insignificant, as the dimensions

defined by the a2- and a3-estimates are arbitrary because of the rotational indeterminancy of the MIRT solutions.

In Figure 4, the clustering in the plot of the a2-estimates against the al-estimates again appears to separate the
Section 1 items from the Section 2 and 3 items. In this case, the a2-estimates are clearly higher for the Section

2 and 3 items than for the Section 1 items. As was the case in Figure 2, the plots of the a3-estimates ag,ain-st the

al- and a2-estimates did not suggest any meaningful content-related pattern.

In summary, Figures 1 through 4 did provide support for considering the listening comprehension section as
measuring a latent ability distinct from the ability measured by the remaining sections of the TOEFL test. In
addition, Figures 1 through 4 suggested that the pattern of the multidimensional item parameter estimates for
the reading comprehension items in Section 3 differed in the foreign and domestic samples. The reasons for
this are not clear, and may warrant further investigation, particularly as the TOEFL program is currently
researching the possibility of revising Section 3 to eliminate discrete vocabulary items.
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Figure 1: Plots of 3-Dimensional A-Values - Form JM
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Confirmatory Results - 3DC1

Table 7 presents the means and standard deviations of the item parameter estimates for each CMIRT solution
obtained for the 3DC1 data. These summary statistics are displayed for the relevant al, a2-, a3-, and b-estimates
from Section 1, Section 2, Section 3 vocabulary, and Section 3 reading comprehension. Although the
confirmatory solutions are not subject to rotational indeterminancy, it should be noted that the latent scales for
these solutions have not been equated and should be compared with caution.

TABLE 7 Means and Standard Deviations of Item Parameter Estimates
by Content Area for Confirmatory Solution 3DC1

Content/
Parameter N

Examinee Sample

JM JP K9 KA

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

S1 al 50 0.86 0.31 0.79 0.27 0.77 0.29 0.83 0.38
S2 al 38 , 0.97 0.37 0.85 0.30 1.03 0.26 0.83 0.21
S3-Voc al 29 0.87 0.27 0.76 0.23 0.94 0.29 0.94 0.30
S3-RC al 29 0.98 0.32 0.90 0.28 1.00 0.34 0.85 0.27

S1 a2 50 0.54 0.18 0.51 0.19 0.52 0.22 0.47 0.23
S2 a3 38 0.53 0.21 0.38 0.22 0.67 0.19 0.51 0.16
S3-Voc a3 29 0.54 0.20 0.48 0.34 0.64 0.24 0.43 0.16
S3-RC a3 29 0.34 0.17 0.42 0.20 0.27 0.16 0.38 0.16

S1 b 50 -0.02 0.75 0.27 0.80 -0.26 0.75 -0.13 0.86
S2 b 38 0.38 0.69 0.21 0.75 0.68 0.76 0.30 0.82
S3-Voc b 29 -0.02 1.14 -0.02 1.05 0.37 1.01 -0.08 1.14
S3-RC b 29 -0.02 0.87 0.24 0.89 -0.14 0.75 0.10 0.77

It is worth noting that the average reading comprehension a3-estimates for Forms JM and IC9 in Table 7 are
much lower than the average a3-estimates for Section 2 or vocabulary items. In addition, the average difficulties
of the listening items compared to the other items tend to follow different patterns in the foreign and domestic
samples. (Contrary to more common IRT estimation programs, in the CONFIRM program, higher b-estimates
correspond to easier items and lower b-estimates correspond to more difficult items.)

DISCUSSION

The results of the exploratory analyses supported the interpretation that the TOEFL test is characterized by
essentially three latent ability dimensions. For each sample analyzed, the CAIC statistics were lowest for the
3D solutions, and for two of the samples (JM and KA), the CAIC statistic was lower for the 2D solution than
for the 4D solution. Although the CAIC statistics suggested that a three-dimensional structure of the TOEFL
test was optimal, the authors were unable to find a consistently meaningful content-related interpretation for all
three dimensions. Inspection of plots of the item discrimination estimates for the exploratory 3D solutions
suggested that the listening comprehension section of the TOEFL examination measures a different ability
dimension than the nonlistening sections of the test. In addition, for the foreign samples, there was some
evidence from the item discrimination estimates that reading comprehension items could be differentiated from
Section 2 and the vocabulary items of Section 3.
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The best fitting model examined in the confirmatory analyses was Solution 3DC1, which suggests the existence
of a general ability dimension, a secondary ability dimension measuring listening comprehension, and a secondary
ability dimension measuring a combination of structure and written expression and vocabulary and reading
comprehension. An alternate model (4DC1), which allowed for a general ability dimension and secondary
dimensions associated with each section of the test, proved clearly to be a less satisfactory solution, as did the
4DC2 model, which differs from the 4DC1 model in that the vocabulary portion of the reading comprehension
section is associated with the secondary ability dimension corresponding to the structure and written expression
section.

The results with respect to solution 3DC1 tend to confirm the interpretation of the TOEFL offered by Hale et
al. (1988).and Hale, Rock, and Jirele (1989), although these authors did not extract a general ability dimension
in their analyses. In the present study, the CMIRT algorithm employed required the extraction of a general
ability dimension. Thus, it should be noted that other plausible confirmatory structures exist that may provide
better fit to the data investigated in this study. For example, it is possible that the stracture of the TOEFL test
could be better supported by a solution with three correlated dimensions (one for each section). In future
investigations, it might be worthwhile to fit CMIRT structures to TOEFL data that do not require every item
to load on a general factor.

Although the models identified as best fitting in this study were consistent across test forms and examinee
samples, there did appear to be tentative evidence of differences in the salience of different dimensions,
depending upon whether the fitted data were based on foreign or domestic samples. A reasonable explanation
for this finding is that the makeup of foreign and domestic examinees taking the TOEFL tends to differ in terms
of native language and proficiency in various aspects of the English language. Several studies with TOEFL test
data have suggested that item performance, test equating, and the structural interpretation of the test may differ
according to examinees' native language and/or English proficiency (Alderman & Holland, 1981; Golub-Smith,
1986; Oltman, Strider, & Barrows, 1988). Furthermore, in operational administrations of the TOEFL test there
is consistent evidence of differences in the way foreign and domestic examinees perform on the listening
comprehension section, compared to the other sections of the test. These differences appear to be related to
differential experience in informal and formal exposure to English. Informal exposure would tend to emphasize
communicative aspects, such as speaking and listening, while formal exposure would tend to emphasize grammar,
vocabulary, and reading.

CONCLUSIONS

The results of this study indicated that the MIRT and CMIRT procedures were quite successful in modeling
secondary ability dimensions on the TOEFL. The two procedures provided corroborative evidence in interpreting
the structure of the test. This evidence was consistent with previous interpretations of the test's structure, and
was verified by examining the characteristics of item parameter estimates in the various solutions obtained in the
study. The data presented in this study also illustrated how the consistent Akaike information criterion can be
utilized to identify the best of several competing models of test structure.

Several areas of research related to application of the MIRT and CMIRT models could not be investigated in
this study but may be of interest for future investigations. For example, in the present study, no attempt was
made to rotate different solutions (for example, the foreign and domestic samples) to a common orientation, or
to equate the multidimensional estimates for different solutions to a common scale. As in the case of
unidimensional IRT, parameter estimates of the same items obtained in separate calibrations are not directly
comparable until they have been transformed to a common scale. Although some progress has been made in
this area (cf. Ackerman, 1990; Hirsch, 1989; Reckase, Davey, & Ackerman, 1989), research must continue to
address this problem if practical use of MIRT parameter'estimates is to be made in applications such as equating
and test development. Another possibility for investigation in future studies could be based on comparisons of
ability stimates obtained in unidimensional and MIRT solutions that have been transformed to an estimated
true score scale. Such transformations might provide information abubt how much practical impact fitting
additional ability dimension would have on examinees' scores. Finally, future applications could attempt to use
MIRT and CMIRT procedures to provide diagnostic feedback to test assemblers for the purpose of modifying
the TOEFL test design. Such feedback could be used to enhance the measurement of important secondary
abilities, or to eliminate them if they were undesired.
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